Dartmouth-Hitchcock MEDICAL CENTER

GEISEL MEDICINE

Evaluation of a Fully Automated System for Use in Somatic Mutation Testing in Colorectal Cancer: a Prospective Study with Comparison to Next-Generation Sequencing

BACKGROUND

- Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States among both men and women.
- The management of CRC has been aided by the advancement and increased usage of molecular testing.
- Mutational analysis of *KRAS* and *NRAS* is warranted for CRC patients considered for anti-EGFR therapy. BRAF codon 600 testing is also recommended in CRC for prognostic stratification.
- The American Society of Clinical Oncology (ASCO) recently expanded their recommendations on molecular testing for CRC patients considered for anti-epidermal growth factor receptor (anti-EGFR) therapy to include KRAS and NRAS codons 12 and 13 of exon 2, codons 59 and 61 of exon 3, and codons 117 and 146 of exon 4 (socalled "expanded" or "extended" RAS testing).
- The Idylla™ system (Biocartis, Mechelen, Belgium) is a fully automated platform that utilizes a single-use cartridge containing all necessary reagents and steps for sample processing and real-time PCR-based mutation amplification and detection.
- In this prospective study, we evaluated the Idylla[™] system against next generation sequencing using colorectal cancer tissue specimens.

DESIGN & METHODS

- · Seventy-five CRC tissue specimens which were ordered for nextgeneration sequencing (NGS) between January 2018 and December 2018 were also prospectively tested on the Idylla[™] system using the KRAS and NRAS-BRAF-EGFR S492R cartridges (Research Use Only), which test for actionable mutations in *KRAS*, *NRAS* and *BRAF*.
- Two 10 μm formalin-fixed paraffin-embedded (FFPE) tissue sections (one for each cartridge) were used for each run on the Idylla[™] and all cases met the system's minimum tumor requirement of 10%.
- NGS testing was performed using the Ion AmpliSeq 50-gene Cancer Hotspot Panel v2 (Thermo Fisher Scientific). NGS results and turnaround time of the testing process were compared to those obtained by the Idylla[™] system.

Figure 1. The Idylla[™] system **Figure 2.** PlexPrime[®]/PlexZyme[®] Technology

	KRAS Mutation Assa		
Exon	Codon		
2	12	G12C, G12R,	
	13		
3	59	A5	
	61	Q61K,	
4	117		
	146	A14	

NRAS-BRAF-EGFR S492R Mut				
Gene	Exon	Codon		
NRAS	2	12	G12C, G1	
		13	G1	
	3	59		
		61	Q61K ,	
	4	117		
		146		
BRAF	15	600	V600E, V	
EGFR	12	492		

Tables 1 & 2. Mutations detectable by the IdyllaTM KRAS and NRAS-BRAF-EGFR S492R Mutation Assays

Figure 3. Distribution of *KRAS, BRAF, and NRAS* mutations among study samples

Figure 4. Comparison of Idylla[™] and NGS av

M. Rabie Al-Turkmani, Donald C. Green, Alicia A. Finney, Michael A. Suriawinata, Gregory J. Tsongalis Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, NH The authors have no conflicts of interest that relate to the content of this abstract

y (RUO)

Mutation

G12S, G12A, G12D, G12V

G13D

59T, A59E, A59G

Q61L, Q61R, Q61H

K117N

16P, A146T, A146V

ation Assay (RUO)

Mutation

L2S, G12A, G12D, G12V

13D, G13R, G13V

A59T

Q61L, Q61R, Q61H

K117N

A146T, A146V

V600D, V600K, V600R

S492R

verage	testing	turnaround	time

Gene Mutated	Number of samples	Idylla TM	NGS
BRAF	10	BRAF V600E/D	BRAF V600E
	1	BRAF V600E/D	BRAF V600E, KRAS T20M*
	1	No mutation detected	<i>BRAF</i> D594N*
	1	No mutation detected	BRAF K601E*
KRAS	3	KRAS G12A	KRAS G12A
	1	KRAS G12C	KRAS G12C
	7	KRAS G12D	KRAS G12D
	1	KRAS G12D, NRAS G12A/V¶	KRAS G12D
	1	KRAS G12S	KRAS G12S
	1	KRAS G12S, NRAS G12A/V [¶]	KRAS G12S
	4	KRAS G12V	KRAS G12V
	3	KRAS G13D	KRAS G13D
	1	KRAS Q61K	KRAS Q61K
	1	KRAS A146P/T/V	<i>KRAS</i> A146T
NRAS	1	NRAS G12D	NRAS G12D
	1	NRAS Q61K	NRAS Q61K
	1	NRAS Q61R	NRAS Q61R
None (WT)	36	No mutation detected in BRAF, KRAS, or NRAS	No mutation detected in BRAF, KRAS, or NRAS

*Mutations not included in the list of mutations detectable by the IdyllaTM [¶] Additional *NRAS* mutation detected by the Idylla[™] but not by NGS

A. Variant Concordance

Figure 5. Variant (A: 93%, 70/75) and clinical (B: 97%, 73/75) concordance between Idylla[™] and NGS results

- FFPE tissue sections.
- the Idylla[™] system and NGS.
- centers by providing rapid turnaround time.

Dartmouth-Hitchcock NORRIS COTTON **CANCER CENTER**

Table 3. Idylla[™] results compared with NGS

B. Clinical Concordance

Concordant Discordant

CONCLUSIONS

• The Idylla[™] system offers rapid and reliable testing of clinically actionable mutations in colorectal cancer specimens directly from

• This prospective study demonstrates high concordance between

• The Idylla[™] system is ideal for centers that lack highly trained molecular staff or infrastructure and can complement NGS in larger