

Martin Reijans¹, Sanne van Gestel¹, Elfi de Haes¹, Charlotte Vandesteene¹, Juan Manuel Castro Gomez¹, Cedric Gouedard², Stefania Patera², Samuel Murray³ and Geert Maertens¹ ¹Biocartis, Generaal de Wittelaan 11B, 2800 Mechelen, Belgium; ²BioPath Innovations SA, Maroussi 15124, Athens, Greece ³BioMarker Solutions Ltd, NW52DX London, UK

INTRODUCTION

To predict the response to EGFR tyrosine kinase inhibitor (TKI) therapy in nonsmall cell lung cancer (NSCLC) patients, formalin-fixed paraffin-embedded (FFPE) tumor tissue is routinely tested for the presence of somatic mutations in the epidermal growth factor receptor (EGFR) gene. Sufficient tumor tissue is not always available and ctEGFR testing from plasma is an alternative approach for the detection of EGFR mutations.

METHODS

IdyllaTM (Biocartis) is a fully integrated molecular detection platform that combines speed and ease of use with high sensitivity and high multiplexing capabilities. In terms of ctDNA testing, it overcomes the time-consuming step of ctDNA extraction from plasma. After the addition of proteinase K and 2 ml of human plasma into the cartridge, the complete process of ctDNA extraction, real-time PCR, data analysis and reporting is fully automated (Fig. 1). The ctEGFR prototype assay allows the detection of mutations including insertions and deletions in exons 18, 19, 20 and 21. A study was performed at BioPath Innovations SA (Athens, Greece) to compare the results obtained by the ctEGFR prototype assay with results obtained on the same plasma samples by NGS (Ion PGM platform with Ion AmpliSeqTM) panel targeting EGFR exons 18, 19, 20 and 21). For each amplicon/exon, NGS target coverage was 2000 reads and the assay could detect allelic frequencies down to 2-5%. Discrepant samples were further tested with the cobas[®] EGFR Mutation Test v2.

RESULTS

Sixty-four NSCLC plasma samples were tested with both assays. One sample failed on NGS. Overall, 34 mutations were detected by NGS and confirmed by the ctEGFR prototype assay. In 33 samples, NGS detected no mutation. The ctEGFR prototype assay detected 8 additional mutations of which 7 mutations were detected in samples which were scored WT by NGS (Fig. 2). Retesting with the cobas EGFR Mutation Test v2 confirmed the presence of these mutations. Analytical sensitivity was assessed for 20 mutations using plasma spiked with synthetic targets. Analytical sensitivities ranging from 1 to 4% were obtained for the tested mutations (Fig. 3). Inclusivity was demonstrated for 49 mutations in total (Fig. 4). The average turnaround time of a run of the ctEGFR prototype assay was <2h 40 min and the hands-on time for loading the cartridge was <2 min.

CONCLUSION

This study shows that the Idylla[™] platform enables the development of a prototype ctEGFR assay with high sensitivity and ease of use combined with a fast turnaround time for the testing of 49 relevant EGFR mutations in 2 ml of plasma.

DISCLOSURES

All authors are full-time employees of the indicated companies.

FEASIBILITY STUDY OF A CTEGFR PROTOTYPE ASSAY ON THE FULLY AUTOMATED IDYLLA™ PLATFORM

Figure 1: ctEGFR work flow

Figure 2: Concordance between EGFR genotyping of plasma with Idylla[™] ctEGFR prototype assay and NGS

		NGS									
					Ex 20				L858R/	Ex19 del/	
		L858R	Ex 19 del	T790M	insertion	S768I	L861Q	G719A/C/S	T790M	T790M	No mutation
	L858R	7									2*
Idylla	Ex 19 del		12								4*
	T790M			1							
	Ex 20 insertion										1*
	S768I					1					
	L861Q										
	G719A/C/S										
	L858R/T790M	1*									
	Ex19 del/T790M									6	
	No mutation										28
* The presence of these mutations was confirmed by the cobas® EGER Mutation Test v2											

Figure 3: LOD table of the Idylla[™] ctEGFR prototype assay

	EGFR Mutation	LOD	
		(% mutant in 10,000 WT cps/ml plasma)	
	LOD c.2156G>C (G719A)	3%	
Exon 18	LOD c.2155G>A (G719C)	1%	
	LOD c.2155G>T (G719S)	2%	
	LOD c.2239_2248delinsC (del9)	2%	
	LOD c.2239_2251delinsC (del12)	1%	
	LOD c.2235_2249del (del15)	1.5%	
Evon 10	LOD c.2236_2250del (del15)	1.5%	
	LOD c.2240_2257del (del18)	3%	
	LOD c.2238_2258del (del21)	1%	
	LOD c.2236-2256del (del21)	2%	
	LOD c.2253-2276del (del24)	4%	
	LOD c.2369C>T (T790M)	1.5%	
	LOD c.2303G>T (S768I)	1%	
	LOD c.2307_2308insGCCAGCGTG (insASV(9))	2%	
Exon 20	LOD c.2309_2310insCCAGCGTGGAT (insASV(11))	2%	
	LOD c.2311_2312insGCGTGG ACA (insSVD)	1%	
	LOD c.2310_2311insGGT (insG)	1%	
	LOD c.2319_2320insCAC (insH)	2%	
Even 24	LOD c.2573T>G (L858R)	1%	
EXON 21	LOD c.2582T>A (L861Q)	2%	

European Society for Medical Oncology (ESMO) 2019 Congress, 27 Sept – 1 Oct, Barcelona, Spain

Correspondence: gmaertens@biocartis.com

Copies of this poster obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors

Loading cartridge with 30 µl proteinase K (20 mg/ml) solution and 2 ml plasma

Hands-on time <2 minutes

Running cartridge on the Idylla[™] platform

Run time <160 minutes

Figure 4: EGFR mutations detected by Idylla[™] ctEGFR prototype assay

EGFR						
exon	Mutation	AA mutation	NT mutation			
	G719A	p.Gly719Ala	c.2156G>C			
E ven 10	G719C	p.Gly719Cys	c.2155G>T			
EXON 18	G719C2	p.Gly719Cys(2)	c.2154_2155delinsTT			
	G719S	p.Gly719Ser	c.2155G>A			
		n Louziz Alozeadolino Dro	c.2238_2248delinsGC			
	Delation 0	p.Leu747_Ala750dellInSPT0	c.2239_2248delinsC			
	Deletion 9	p.Leu747_Ala750delinsSer	c.2240_2248del			
		p.Leu747_Glu749del	c.2239_2247del			
	Dolotion 12	p.Leu747_Thr751delinsPro	c.2239_2251delinsC			
	Deletion 12	p.Leu747_Thr751delinsSer	c.2240_2251del			
		n Clu746 Ala750dal	c.2235_2249del			
			c.2236_2250del			
			c.2239_2253del			
		p.Leu747_Thr751del	c.2240_2254del			
			c.2238_2252del			
		p.Glu746_Thr751delinsAla	c.2237_2251del			
	Deletion 15	p.Glu746_Thr751delinslle	c.2235_2252delinsAAT			
	Deletion 13	p.Glu746_Thr751delinsVal	c.2237_2252delinsT			
		p.Lys745_Ala750delinsThr	c.2234_2248del			
		p.Glu746_Thr751delinsLeu	c.2236_2253delinsCTA			
Exon 19		p.Glu746_Thr751delinsVal	c.2237_2253delinsTA			
		p.Glu746_Thr751delinsAla	c.2235_2251delinsAG			
		p.Glu746_Thr751delinsGln	c.2236_2253delinsCAA			
		p.lle744_Ala750delinsValLys	c.2230_2249delinsGTCAA			
		p.Leu747_Pro753delinsSer	c.2240_2257del			
		p.Glu746_Ser752delinsVal	c.2237_2255delinsT			
		p.Leu747_Ser752del	c.2239_2256del			
		p.Glu746_Thr751del	c.2236_2253del			
		p.Leu747_Pro753delinsGln	c.2239_2258delinsCA			
	Deletion 18	p.Glu746_Ser752delinsAla	c.2237_2254del			
		p.Glu746_Ser752delinsAsp	c.2238_2255del			
		p.Glu746_Ser752delinslle	c.2236_2256delinsATC			
			c.2237_2256delinsTT			
		p.Glu746_Ser752delinsVal	c.2237_2256delinsTC			
			c.2235_2255delinsGGT			
	Deletion 21	p.Leu747_Pro753del	c.2238_2258del			
		p.Glu746_Ser752del	c.2236_2256del			
	Deletion 24	p.Ser752_lle759del	c.2253_2276del			
	T790M	p.Thr790Met	c.2369C>T			
	S768I	p.Ser768lle	c.2303G>T			
	InsG	p.Asp770_Asn771insGly	c.2310_2311insGGT			
Exon 20	InsASV(9)	p.Val769_Asp770insAlaSerVal	c.2307_2308insGCCAGCGTG			
	InsASV(11)	p.Val769_Asp770insAlaSerVal	c.2309_2310delinsCCAGCGTGGAT			
	InsSVD	p.Asp770_Asn771insSerValAsp	c.2311_2312insGCGTGGACA			
	InsH	p.His773_Val774insHis	c.2319_2320insCAC			
			c.2573T>G			
Exon 21	L858R	p.Leu858Arg	c.2573_2574delinsGT			
			c.2573_2574delinsGA			
	L861Q	p.Leu861GIn	c.2582T>A			

